769 research outputs found

    Parametric Representation of Tactile Numerosity in Working Memory

    Get PDF
    Estimated numerosity perception is processed in an approximate number system (ANS) that resembles the perception of a continuous magnitude. The ANS consists of a right lateralized frontoparietal network comprising the lateral prefrontal cortex (LPFC) and the intraparietal sulcus. Although the ANS has been extensively investigated, only a few studies have focused on the mental representation of retained numerosity estimates. Specifically, the underlying mechanisms of estimated numerosity working memory (WM) is unclear. Besides numerosities, as another form of abstract quantity, vibrotactile WM studies provide initial evidence that the right LPFC takes a central role in maintaining magnitudes. In the present fMRI multivariate pattern analysis study, we designed a delayed match-to-numerosity paradigm to test what brain regions retain approximate numerosity memoranda. In line with parametric WM results, our study found numerosity-specific WM representations in the right LPFC as well as in the supplementary motor area and the left premotor cortex extending into the superior frontal gyrus, thus bridging the gap in abstract quantity WM literature

    Neural basis of somatosensory target detection independent of uncertainty, relevance, and reports

    Get PDF
    Research on somatosensory awareness has yielded highly diverse findings with putative neural correlates ranging from activity within somatosensory cortex to activation of widely distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive processes that often coincide with stimulus awareness in experimental settings. To scrutinise the specific relevance of regions implied in the target detection network, we used functional magnetic resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection, we show that responses reflecting target detection are restricted to secondary somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific cortex for the emergence of perceptual awareness and dissect the contribution of the frontoparietal network to classical detection tasks

    A multimodal cortical network of sensory expectation violation revealed by fMRI

    Get PDF
    The brain is subjected to multi-modal sensory information in an environment governed by statistical dependencies. Mismatch responses (MMRs), classically recorded with EEG, have provided valuable insights into the brain's processing of regularities and the generation of corresponding sensory predictions. Only few studies allow for comparisons of MMRs across multiple modalities in a simultaneous sensory stream and their corresponding cross-modal context sensitivity remains unknown. Here, we used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, somatosensory and visual modality. Participants (N = 29) were simultaneously presented with sequences of low and high intensity stimuli in each of the three senses while actively observing the tri-modal input stream and occasionally reporting the intensity of the previous stimulus in a prompted modality. The sequences were based on a probabilistic model, defining transition probabilities such that, for each modality, stimuli were more likely to repeat (p = .825) than change (p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transition was conditional on the configuration of the other two modalities comprising global (cross-modal) predictive properties of the sequences. We identified a shared mismatch network of modality general inferior frontal and temporo-parietal areas as well as sensory areas, where the connectivity (psychophysiological interaction) between these regions was modulated during mismatch processing. Further, we found deviant responses within the network to be modulated by local stimulus repetition, which suggests highly comparable processing of expectation violation across modalities. Moreover, hierarchically higher regions of the mismatch network in the temporo-parietal area around the intraparietal sulcus were identified to signal cross-modal expectation violation. With the consistency of MMRs across audition, somatosensation and vision, our study provides insights into a shared cortical network of uni- and multi-modal expectation violation in response to sequence regularities

    The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics

    Get PDF
    Background: Classic serotonergic psychedelics have anecdotally been reported to show a characteristic pattern of subacute effects that persist after the acute effects of the substance have subsided. These transient effects, sometimes labeled as the ‘psychedelic afterglow’, have been suggested to be associated with enhanced effectiveness of psychotherapeutic interventions in the subacute period. Objectives: This systematic review provides an overview of subacute effects of psychedelics. Methods: Electronic databases (MEDLINE, Web of Science Core Collection) were searched for studies that assessed the effects of psychedelics (LSD, psilocybin, DMT, 5-MeO-DMT, mescaline, or ayahuasca) on psychological outcome measures and subacute adverse effects in human adults between 1950 and August 2021, occurring between 1 day and 1 month after drug use. Results: Forty-eight studies including a total number of 1,774 participants were eligible for review. Taken together, the following subacute effects were observed: reductions in different psychopathological symptoms; increases in wellbeing, mood, mindfulness, social measures, spirituality, and positive behavioral changes; mixed changes in personality/values/attitudes, and creativity/flexibility. Subacute adverse effects comprised a wide range of complaints, including headaches, sleep disturbances, and individual cases of increased psychological distress. Discussion: Results support narrative reports of a subacute psychedelic ‘afterglow’ phenomenon comprising potentially beneficial changes in the perception of self, others, and the environment. Subacute adverse events were mild to severe, and no serious adverse events were reported. Many studies, however, lacked a standardized assessment of adverse effects. Future studies are needed to investigate the role of possible moderator variables and to reveal if and how positive effects from the subacute window may consolidate into long-term mental health benefits

    The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics

    Get PDF
    Background: Classic serotonergic psychedelics have anecdotally been reported to show a characteristic pattern of subacute effects that persist after the acute effects of the substance have subsided. These transient effects, sometimes labeled as the ‘psychedelic afterglow’, have been suggested to be associated with enhanced effectiveness of psychotherapeutic interventions in the subacute period. Objectives: This systematic review provides an overview of subacute effects of psychedelics. Methods: Electronic databases (MEDLINE, Web of Science Core Collection) were searched for studies that assessed the effects of psychedelics (LSD, psilocybin, DMT, 5-MeO-DMT, mescaline, or ayahuasca) on psychological outcome measures and subacute adverse effects in human adults between 1950 and August 2021, occurring between 1 day and 1 month after drug use. Results: Forty-eight studies including a total number of 1,774 participants were eligible for review. Taken together, the following subacute effects were observed: reductions in different psychopathological symptoms; increases in wellbeing, mood, mindfulness, social measures, spirituality, and positive behavioral changes; mixed changes in personality/values/attitudes, and creativity/flexibility. Subacute adverse effects comprised a wide range of complaints, including headaches, sleep disturbances, and individual cases of increased psychological distress. Discussion: Results support narrative reports of a subacute psychedelic ‘afterglow’ phenomenon comprising potentially beneficial changes in the perception of self, others, and the environment. Subacute adverse events were mild to severe, and no serious adverse events were reported. Many studies, however, lacked a standardized assessment of adverse effects. Future studies are needed to investigate the role of possible moderator variables and to reveal if and how positive effects from the subacute window may consolidate into long-term mental health benefits.Peer Reviewe

    Altered states phenomena induced by visual flicker light stimulation

    Get PDF
    Flicker light stimulation can induce short-term alterations in consciousness including hallucinatory color perception and geometric patterns. In the study at hand, the subjective experiences during 3 Hz and 10 Hz stroboscopic light stimulation of the closed eyes were assessed. In a within-subjects design (N = 24), we applied the Positive and Negative Affect Schedule (mood state), time perception ratings, the Altered State of Consciousness Rating Scale, and the Phenomenology of Consciousness Inventory. Furthermore, we tested for effects of personality traits (NEO Five-Factor Inventory-2 and Tellegen Absorption Scale) on subjective experiences. Such systematic quantification improves replicability, facilitates comparisons between pharmacological and non-pharmacological techniques to induce altered states of consciousness, and is the prerequisite to study their underlying neuronal mechanisms. The resulting data showed that flicker light stimulation-induced states were characterized by vivid visual hallucinations of simple types, with effects strongest in the 10 Hz condition. Additionally, participants’ personality trait of Absorption scores highly correlated with the experienced alterations in consciousness. Our data demonstrate that flicker light stimulation is capable of inducing visual effects with an intensity rated to be similar in strength to effects induced by psychedelic substances and thereby support the investigation of potentially shared underlying neuronal mechanisms

    Enhanced processing of aversive stimuli on embodied artificial limbs by the human amygdala

    Get PDF
    Body perception has been extensively investigated, with one particular focus being the integration of vision and touch within a neuronal body representation. Previous studies have implicated a distributed network comprising the extrastriate body area (EBA), posterior parietal cortex (PPC) and ventral premotor cortex (PMv) during illusory self-attribution of a rubber hand. Here, we set up an fMRI paradigm in virtual reality (VR) to study whether and how the self-attribution of (artificial) body parts is altered if these body parts are somehow threatened. Participants (N = 30) saw a spider (aversive stimulus) or a toy-car (neutral stimulus) moving along a 3D-rendered virtual forearm positioned like their real forearm, while tactile stimulation was applied on the real arm in the same (congruent) or opposite (incongruent) direction. We found that the PPC was more activated during congruent stimulation; higher visual areas and the anterior insula (aIns) showed increased activation during aversive stimulus presentation; and the amygdala was more strongly activated for aversive stimuli when there was stronger multisensory integration of body-related information (interaction of aversiveness and congruency). Together, these findings suggest an enhanced processing of aversive stimuli within the amygdala when they represent a bodily threat

    The Somatotopy of Mental Tactile Imagery

    Get PDF
    To what degree mental imagery (MI) bears on the same neuronal processes as perception has been a central question in the neurophysiological study of imagery. Sensory-recruitment models suggest that imagery of sensory material heavily relies on the involvement of sensory cortices. Empirical evidence mainly stems from the study of visual imagery and suggests that it depends on the mentally imagined material whether hierarchically lower regions are recruited. However, evidence from other modalities is necessary to infer generalized principles. In this fMRI study we used the somatotopic organization of the primary somatosensory cortex (SI) to test in how far MI of tactile sensations activates topographically sensory brain areas. Participants (N = 19) either perceived or imagined vibrotactile stimuli on their left or right thumbs or big toes. The direct comparison to a corresponding perception condition revealed that SI was somatotopically recruited during imagery. While stimulus driven bottom-up processing induced activity throughout all SI subareas, i.e., BA1, BA3a, BA3b, and BA2 defined by probabilistic cytoarchitectonic maps, top-down recruitment during imagery was limited to the hierarchically highest subarea BA2

    Representation of visual numerosity information during working memory in humans: An fMRI decoding study

    Get PDF
    Both animal and human studies on numerosity have shown the importance of the parietal cortex for numerosity processing. However, most studies have focused on the perceptual processing of numerosity. Still, it is unclear how and where numerosity information is coded when this information is retained during a working memory delay phase. Such temporal storage could be realized by the same structures as perceptual processes, or be transformed to a more abstract representation, potentially involving prefrontal regions. FMRI decoding studies allow the identification of brain areas that exhibit multi-voxel activation patterns specific to the content of working memory. Here, we used an assumption-free searchlight-decoding approach to test where numerosity-specific codes can be found during a 12 s retention period. Participants (n = 24) performed a retro-cue delayed match-to-sample task, in which numerosity information was presented as visual dot arrays. We found mnemonic numerosity-specific activation in the right lateral portion of the intraparietal sulcus; an area well-known for perceptual processing of numerosity. The applied retro-cue design dissociated working memory delay activity from perceptual processes and showed that the intraparietal sulcus also maintained working memory representation independent of perception

    The multimodal Ganzfeld-induced altered state of consciousness induces decreased thalamo-cortical coupling

    Get PDF
    Different pharmacologic agents have been used to investigate the neuronal underpinnings of alterations in consciousness states, such as psychedelic substances. Special attention has been drawn to the role of thalamic filtering of cortical input. Here, we investigate the neuronal mechanisms underlying an altered state of consciousness (ASC) induced by a non-pharmacological procedure. During fMRI scanning, N=19 human participants were exposed to multimodal Ganzfeld stimulation, a technique of perceptual deprivation where participants are exposed to intense, unstructured, homogenous visual and auditory stimulation. Compared to pre- and post-resting-state scans, the Ganzfeld data displayed a progressive decoupling of the thalamus from the cortex. Furthermore, the Ganzfeld-induced ASC was characterized by increased eigenvector centrality in core regions of the default mode network (DMN). Together, these findings can be interpreted as an imbalance of sensory bottom-up signaling and internally-generated top-down signaling. This imbalance is antithetical to psychedelic-induced ASCs, where increased thalamo-cortical coupling and reduced DMN activity were observed
    • …
    corecore